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while for the point liberation of energy we have rf ~ t ~/~ and drf/dt ~ t -~~ 

Thus, we have shown that the initial spatial distribution of released energy has an 
appreciable influence on the propagation of the thermal wave. 

In conclusion, we note that later stages in the process, when the velocity of the thermal 
wave front is comparable with that of sound in the heated gas, can be described by the methods 
examined in [i, 2]. 

i. 

. 

3. 
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RADIATIVE-CONDUCTIVE HEAT TRANSFER IN A THIN SEMITRANSPARENT 

PLATE IN THE GUIDED-WAVEAPPEOXIMATION FOR A TEMPERATURE- AND 

FREQUENCY-DEPENDENT ABSORPTION COEFFICIENT 

M. G. Vasil'ev and V. S. Yuferev UDC 536.2 

The radiatlve-conductlve heat-transfer problem has been studied previously [i] for a thin 
semitransparent cylinder whose refractive index is much greater than unity. This class of 
problems arises in the investigation of the temperature fields in semitransparent crystals 
such as sapphire or lithium hi.bate during pullin 8 from the melt by the Czochralski or 
Stepanov method. It is shown that the radiative energy transfer in the indicated cylinder 
can be described by the so-called gulded-wave approximation, where only those rays which 
undergo total internal reflection at the boundary of the cylinder are included in the radiant 
flux in its interior. A comparison of the analytical with experimental results and a study 
of heat transfer in a semitransparent cylinder coated with a thin absorbing film are reported 
in [2], Heat transfer in a thin infinitely wide semitransparent plate is discussed in the 
same paper. However, the constant absorption coefficient postulated in [1, 2] appears to be 
rather crude. For example, according to the data of [3], the absorption coefficient of sap~ 
phire in the temperature range 1200-2000~ varies quite considerably, from 0.004 to 0.5 cm- , 
in the interval of wavelengths up to 4 ~m, where the bulk of the radiated energy is concen- 
trated. It is important, therefore, to calculate the temperature field in a semitransparent 
plate whose absorption coefficient depends on the temperature and frequency. 
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Generally speaking, the modeling of processes of crystal pulling fro~ the melt requires 
solution of the more general heat-transfer problem in the melt and solid phase, with a simul- 
taneous determination of the Rositlon and geometry of the crystallization front. However, 
the influence of the front on'the temperature field in a thin plate extends only a small 
distance of the order of its thickness. The heat-transfer problem can therefore be separated 
into ~wo problems: calculation of the main temperature field in the crystal and calculation 
of the correction induced by the influence of the interface geometry and position. Moreover~ 
inasmuch as the pulling rate of hlgh-meltlng crystals is small, its influence is usually ne- 
glected. As a result, for the steady-state pullln8 process we arrive at an independent heat- 
transfer problem in a thin semitransparent plate, and this problem is the subject of the 
present study. 

Thus, let plane shields be set up parallel to the plate on both sides, serving as 
secondary heaters. The temperature of the shields is assumed to be known and constant over 
their width. The gap between the shields and the plate is evacuated or filled with a gas 
with negligible absorption, and free convection can be neglected. We also assume that scat- 
tering is absent, the side surface of the plate is transparent and perfectly smooth, and the 
thermal conductivity is isotroplc. We consider the ends of the plate to be absolutely black. 
In this case the warmer base corresponds to the crystallization front in the pulling of a 
crystal from the melt. Let the following geometrical relations also be satisfied in the 
system: 

d/Z << I, d/b << I, MZ << I, k~d << i~ (i) 

where d, b, and Z are the thickness, width, and length of the plate; h, distance between the 
plate and the shield; and kl, absorption coefficient at wavelength I. Then, as a resul~ of 
the stated assumptions, the thermal radiation in the plate will undergo multiple reflection 
and refraction at its side surface. The radiant flux will therefore essentially contaln 
only the part which propagates along the plate as in an optical waveguide. Formally, this 
situation is equivalent to replacement of the real reflection coefficient by a step function: 

R ( e ) =  ~r 0 < 0  t, 

where O t is t h e  angle of total internal reflection. 

It is essential to note that light rays can be reflected not only at the wide sides, but 
also at the narrow sides of the plate. The guided-wave approximation therefore holds if 

k ~ b > t  or k ~ b < < l ,  b/Z<<l.  (2) 

In the first case thereflectlons from the narrow faces of the plate can be neglected, cor- 
responding to an infinitely wide plate from the radiatlve-transfer point of view, while in 
the second case there are quite a few of the indicated reflections, and the problem is es- 
sentially reducible to heat transfer in a cylinder with a rectangular base (bar). 

In both cases, imposing the above-stated constraints (i) and (2), we can assume that the 
temperature field varies only along the length of the plate. Then the radlative--conductive 
heat-transfer equation is written in the one-dlmensional form 

dT 

where T = To at x = 0 and T = T~ at x = Z. Here Bx(T) is the spectral radiation density of 
an absolute black body: 

B~ (T) = 2~2/(XSn2(exp(tw/n~kT) --  t)), 

~ B~ (T) = n2T 4, d~ 

where n is the refractive index, ~ is the Stefan--Boltzmann constant, and i~ is the radiation 
intensity arriving at the point (x, y, z). To determine i I we use the equation 

d i ~ / d s + k ~  = k ~ B ~  (T), 

in which s is the path length along the light ray. 
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TABLE 1 

T , ~ C ~  

i200 
i500 
i600 
i700 
2020 

0,25--0,5 

0,06 
0,2 
0,3 
0,6 
0,4 

0,5-i 

0,02 
O,t 

0,05 
0,27 

t -3  

0,005 
0,027 
0,07 
0,12 
0,14 

3-~ 

0,13 
0,14 
0,t6 
0,t8 
0,30 

,I-5 

2,0 
2,4 
2,7 
3,0 
4,0 

The radiation intensity is made up of the radiation from the bases of the plate ifx, ira, 
the plate proper ic, and the shields i s. Accordingly, for the spatial radiation density we 
have 

I x=  y izd~ = ~ + I i ~ @  Ic@L. (4) 

As mentioned previously, in the calculation of I~ it is only required to include those rays 
whose angle of incidence on the side surface of the plate is greater than 0 t. We first con- 
sider the term Ifx, which describes the radiation density at an arbitrary point (x, y, z) of 
the plate from its base x = 0. It can be shown that the domain of integration in (4) in this 
case contains those points (O~ y', z') of the base of the plate whose coordinates obey the 
inequalities 

Here the axis Oz is perpendicular to the plane of the plate, and 

zl =--z+(--i)nz'• yt=--y+(--i)~y'+mb~ a = x~otOf~ 

where n and m are the numbers of reflections from the wide and narrow faces of the plate. It 
is clear that for a wide plate with kAb >> 1 the second condition in (5) must be discarded, 
because the reflections from the narrow faces of the plate can be neglected in this case. 
The general form of the domain dellmited by inequalities (5) is shown in Fig. i. The hatched 
zones contain points from which radiation leaves the plate and does not reach the reception 
point. 

Going over from integration over the solid angle to integration over the domain (5) in 
the expression (4) for If, and making certain transformations, we obtain 

I n (L, x) = 2~B~ (To) I k~ (T (x')) dx' , 

1 n 

where ~ = ~ r  k~b << 1, b/Z << 1. 

An analogous expression holds of Ifa: 

,(! ) I ~ ( ~ , z )  = 2 ~ B ~ ( T a ) I  k x ( T ( x ' ) ) d x ' .  (7) 

OI 
If. 

The radiation density from the total volume of the plate I c can be expressed in terms of 

z 
I c ( ~ , , x ) = 2 ~ B ~ ( T  ' I ~ (z )) o (x, x') dx', 

o 

1~ (x, x') = g ',=tn(~,,') 

(8) 
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To determine the shield radiation I s , on the other hand, we invoke the assumption of a small 
gap between the shield and the plate. Then, reasoning as in [1], we obtain 

& (~, x) = 4~ (l -- I~ (0)) B~ (T~). (9) 

Expressions (6)-(9) do not contain any dependence on y and z, making it superfluous to 
average over the plate cross section on the right-hand side of Eq. (3). It must also be 
noted that the radiation density I% does not depend on the thickness or the width of the 
plate. 

All the concrete calculations are carried out for an infinitely wide sapphire plate for 
the following values of the parameters: 

To = 2326~ T. = 1600~ Z = 25 cm~ n = t.75. 

As in [I], the thermal conductivity • (T) is approximated by the function 

• (8.42 -- 2i.9T/T o + t6,2 (T/To) S) for T/To< 0.676, 
• = t• for T/To>0,676, 

where • = 0.01 cal/sec-cm-~ 

The temperature and frequency dependence of the absorption coefficient is plotted on the 
basis of [3]. For values of T lacking experimental data kl(T) is calculated by linear inter- 
polation. The frequency dependence of the absorption coefficient is approximated by a step 
function. The values of kA(T) used in the calculations are listed in Table 1. It is impor- 
tant to note that at temperatures close to the melting point and for wavelengths i < 1.5 ~m 
the values of k I given in this article begin to decrease. The authors of [3] do not offer 
any explanation for this effect, and they express certain doubts as to the reliability of the 
experimental data at T = 2020~ 

Besides the selective absorption of radiation, we also consider the gray-body approxima- 
tion, where the absorption coefficient depends only on the temperature. In this case the 
value of the absorption coefficient at temperature T is interpreted as its value kk(T) at 
wavelength lmax, as given by the relation [4] 

rt~,maxT = 0.3668 em- ~ 

This wavelength corresponds to the radiation maximum in the absolute blackbody spectrum at 
this temperature. The function k(T) so obtained is shown in Fig. 2. The circle-dots repre- 
sent the experimental values taken from [3]. The absorption coefficient is approximated by a 
linear function between them. 

In the gray-body approximation Eq. (3) is simplified considerably, taking the form 

d~. • (T) ~ = 4k ( r )  n2~ir ~ - -  2k ( r )  n~c~ I}  /~ (T) dx '  T~ + I~ (T) r l  + 
(lO) 

z ] 
-.'- 2 I~ (x, x') T 4 (x') dx' + 2 (1 -- I~ (0)) T~. 

0 

To solve the nonlinear integrodifferential equations (3) and (I0) we use a conservative 
finite-difference scheme in conjunction with quasillnearization in each iteration. Since the 
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@ X ! kernel Ic(X , ) of the integral operator (8) has a logarithmic singularity, and to ensure 
convergence of the iteration process, we transform the integral with respect to x' (8) on the 
right-hand side of (3) as follows: 

z z 
f 2uk~B~. (T (x')) Ig (x, x') d~dx' = .[ .f 2~kx (Bx(T (x')) -- B~. (Ti(x))) I~ (x, :x') d~,dx' + 

" o f , !  o 

Here the first term no longer has a singularity in the Integrand, and the second term does 
not contain any integration with respect to x; it can be combined with the first term on the 
right-hand side of (3). We then obtain an expression of the form 

( l l )  

We apply quasilinearization to the T ~ function in front of the integral and compute the re- 
maining expressions and integrals associated with radiative energy transfer from the pre- 
ceding iteration. 

The shield temperature is given as a linear function: 

r, = rs - (r~ - r3)x/z. 

--I 
The results of the calculations for Ts = Te and Ts = T~ are given in Fig. 3 for k = 0,i cm 
(curve i) and the selective approximation (curve 3). It is seen that allowance for the tem- 
perature dependence of the absorption coefficient yields additional substantial cooling of 
the plate. On the other hand, the temperature distribution for selective radiation absorp- 
tion in the greater part of the plate exclusive of its cold zone agrees fairly well with the 
temperature field in the gray-body approximation (curve 2). 

The curvature of the temperature field in the vicinity of x = 0 is very pronounced and 
can therefore induce large thermal stresses during the pulling of crystals and significantly 
aggravate their defect state. Expression (9) also shows that the shields are not very effec- 
tive for the heating of a semitransparent plate, because a very large part of their radiation 
is reflected from the surface of the plate. Consequently, to compensate for the part of the 
energy transported along the plate as along an optical waveguide the shields should be heated 
well above the malting point in the vicinity of the crystallization front. The temperature 
distribution in the plate with two shields is shown in Fig. 4 for the case in which the 
absorption coefficient depends only on the temperature: 1) Ta = 2326~ 2) T~ = 2500~ It 
is seen that with elevation of the temperature of the shields the variation of the tempera- 
ture field near x = 0 becomes considerably less abrupt. 
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NATURAL VIBRATIONAL FREQUENCIES OF A GAS OUTSIDE A CIRCULAR 

CYLINDRICAL SURFACE 

V. B. Kurzin and S. V. Sukhinin UDC 534.2:532 

One of the little-studied problems in the theory of wave processes is that of natural 
vlbra~ions in open regions, i.e., regions having infinitely distant points. Examples in the 
literature of the solution of appropriate problems are not precisely formulated. Among these, 
e.g., is the theory of resonators developed in the last century by Helmholtz and Raylelgh, 
and the theory of an open tube in acoustics [I]. Under the assumption that the process of 
natural vibrations in a resonator is steady, these authors estimated the effect of an opening 
on the frequency of vibrations, and determined the approximate degree of their damping as a 
consequence of the radiation of energy into the external space. They did not study the 
character of the vibrations of a gas far from resonance. We now assume that the vibrations 
of a gas can be considered steady over the whole region, clear up to infinitely distant 
poln~s. Then, introducing the time dependence by t~e factor 

exp(--ik-~) (k = k" + ik~, k" = ko + Ak, k~ < O) 

(where a is the speed of sound; ~, a characteristic dimension of the resonator; ko, reduced 
frequency of natural vibrations of the gas in the resonator with the opening closed; Ak, cor- 
rection of the frequency introduced by the opening; and k", a quantity characterizing the 
damping of the vibrations), we change over from the wave equation to the Helmholtz equation 
for the whole region occupied by the gas. In the absence of waves from infinity, the solu- 
tion of this equation for k" < 0 will increase exponentially at an infinite distance from the 
resonator. It obviously does not satisfy the Sommerfeld radiation conditions, and is at 
variance with the usual formulation of external boundary-value problems for the Helmholtz 
equation. Actually, of course, such a result is not realized, since the damping of free 
vibrations cannot continue infinitely long. However, the Helmholtz equation is a convenient 
model for describing ~ibrations of a continuous medium, and therefore a question arises of 
the rigorous mathematical formulation of the radiation condition for complex values of the 
wave number k with k" < 0. It was formulated for the first time for the two-dimensional case 
[2], and generalized later to the three-dimenslonal case in [3]. It should be noted that 
questions related to natural vibrations in open regions arise in scattering theory. Thus, 
in [4] the asymptotic solution of the scattering problem outside the obstacle is written as 
a series in the eigenfunctlons of corresponding boundary-value problems for the Helmholtz 
equation. In this case it was shown rigorously that the eigenfunctions satisfying the out- 
going radiation condition increase exponentially at large distances from the obstacle~ and 
the corresponding elgenvalues are complex and lle in the lower halfplane. It was shown in 
the three-dlmensional case that the eigenvalues of the external problem for finite obstacles 
are discrete. Certain qualitative results concerning external elgenvalues were obtained by 
Arsen'ev [5, 6] who invesuigated the resonance properties of the solution of the scattering 
problem for a domain of the type of a cavity resonator. Arsen'ev showed that for a suf- 
ficiently small opening of the resonator, the poles of the solution sought are loca~ed in the 
neighborhood of the eigenvalues of the external and internal boundary-value problems for the 
respective regions without openings. In the present article we investigate the precisely 
formulated problem of the dependence of the complex eigenvalues of the Helmholtz equation 
on the size of the opening of a resonator in the form of an infinite cylinder with a longi- 
tudinal slot. 
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